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Abstract 

In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-

level planning of industrial gas operations. The objective is to minimize the total cost of production and 

distribution of liquid products by coordinating production decisions at multiple plants and distribution 

decisions at multiple depots. Production decisions include production modes and rates that determine 

power consumption. Distribution decisions involve source, destination, quantity, route, and time of each 

truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this 

contribution is to assess the benefits of optimal coordination of production and distribution. The proposed 

methodology has been tested on small, medium, and large size examples. The results show that significant 

benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of 

shared customer demands. The application to real industrial size test cases is also discussed. 
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1. Introduction 
 

This paper addresses the problem of determining optimal operational level decisions for the 

coordinated production and distribution of industrial gas supply-chains. In this industry, cryogenic air 

separation processes are used to produce oxygen, nitrogen, and argon both as gaseous and liquid products. 

Air separation units consume large amounts of electricity, mainly due to the operation of the compressors 

used at different stages of the process. Depending on the equipment configuration selected, alternative 

operation modes with different production capacities and energy efficiencies are available at each plant. 

The electricity market has greatly evolved over the last decades and electricity prices fluctuate during the 

day depending on market conditions. Moreover, power providers offer different pricing schemes, where 

electricity cost variations can occur every hour, every minute, or on a peak/off-peak basis depending on 

the scheme adopted. Because the cost of electricity is the main component of the production cost, 

production level decisions can be optimized by following the electricity market conditions. 

On the distribution side, gaseous and liquid customers of industrial gases are usually served by 

pipeline and bulk truck delivery, respectively. Gaseous products are supplied into the pipeline directly 

from the air separation unit. Customers of gaseous products are usually located near the plants and 

referred as “on-site” or “over-the-fence” customers. Their demands are tied by strict contractual 

obligations and must always be met. Therefore, when an event can impact the gaseous production, 

inventory of liquid product may be gasified and sent to the pipeline to ensure that over-the-fence customer 

demands are satisfied. Moreover, product must be imported from other sources if the available inventory 

is not enough to meet the gaseous demand. 

Liquid products are stored on-site in cryogenic storage tanks. From there they are loaded into 

trailers and carried to customer sites by truck. The transportation cost for bulk truck delivery is the main 

component of the distribution cost. Both the frequency of deliveries to a given customer and the selection 

of routes supplying product to multiple customers are critical in order to reduce the transportation cost. 

Cryogenic storage tanks are available at customer sites and gauge readings received from remote 

telemetry units are used to keep track of the inventory levels. The vendor is responsible by contract to 

ensure that customers do not run out of product. Instead of receiving “call in” orders for replenishment, in 

this industry, vendor managed inventory (VMI) systems are usually used. Based on customer 

consumption profiles and market conditions, the vendor decides not only how much product to deliver but 

also when the delivery will take place. The logistics problem that simultaneously considers vehicle 

routing and inventory management at customer sites is called inventory routing problem (IRP). The 
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distribution schedule depends not only on the availability of trucks, trailers, and drivers, but also on the 

inventory levels of liquid products at plants and customers. The replenishment of storage tanks at 

customer locations must be secured by an appropriate distribution schedule, which ideally should feature 

a minimum distribution cost.  

The main goal of this contribution is to assess the benefits of the optimal coordination of production 

and distribution decisions in an industrial gases supply-chain. A mixed-integer linear programming 

(MILP) formulation minimizing the overall cost of production and distribution over a limited time 

horizon (7 to 14 days) is presented. Figure 1 depicts the main processes and decision problems involved 

in the supply-chain under consideration. On the production side, multiple plants and products are 

considered, and the optimal operation modes and production rates for every plant taking into account 

fluctuating electricity prices are sought. On the distribution side, multiple depots are included, and trucks 

at a given depot can deliver product from multiple plants. Furthermore, in order to ensure customer 

storage replenishments, products can be purchased from alternative sources. As the number of sources, 

depots, and customers increase, the selection of the alternative routes becomes a critical issue. The 

connection between production and truck-distribution is given by the amount of liquid product stored at 

the plants at any given time. The main focus of this paper is the production and distribution of liquefied 

product. However, the demand for gaseous product is considered if a plant is forced to decrease its 

gaseous production (e.g., during a plant shutdown). In this case, as a back-up solution, the liquid product 

must be vaporized to meet the gaseous customer pipeline demand. 

 

 
Figure 1. Processes and decision problems involved in the supply-chain of liquefied industrial gases. 

 

The rest of this paper is organized as follows: Section 2 includes a review of previous works on 

production and distribution of industrial gases and the related energy intensive scheduling and vehicle 
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logistics problems. A formal description of the problem statement and main assumptions are presented in 

Section 3. Section 4 introduces the mathematical formulation for coordinated multi-plant production and 

distribution. Different levels of coordination for the supply-chain decisions are also described to compare 

the proposed simultaneous method with sequential and single-plant alternatives. Two illustrative but 

realistic examples are presented in Section 5, and the application of the proposed methodology to real 

industrial-size test cases is also discussed. Finally, conclusions are presented in Section 6. 

2. Literature Review 
 

Smith and Klosek (2001) provide an overview of air separation technologies used to obtain 

nitrogen, oxygen, argon, and other atmospheric or specialty gases. Also, a review of relatively recent 

developments in cryogenic air separation processes and prospective analysis of future technologies can be 

found in Castle (2002). An analysis of potential savings on electricity cost under a real time pricing (RTP) 

scheme for industrial end users through improved demand management is presented by Ross et al. (1998). 

Several contributions tackle the problem of deciding optimal operational level decisions for energy 

intensive processes such as air separation, where the cost of electricity is sought to be minimized 

(Daryanian et al., 1989; Ierapetritou et al., 2002; Karwan and Keblis, 2007; Mitra et al., 2012). By using 

formulations with multiple time periods and assuming steady state operation at each time, they seek to 

reduce the overall cost of production over a given planning horizon. Daryanian et al. (1989) studied the 

application of an optimal algorithm for single storage electricity consuming processes with electricity spot 

prices. They present a case study of an air separation facility and analyze potential savings comparing flat 

rate electricity costs with spot priced electricity. The results show that rescheduling electricity 

consumption provides opportunities for substantial savings in electricity costs. Recent works incorporate 

uncertainty in the electricity prices. Ierapetritou et al. (2002) developed a two-stage stochastic 

programming formulation where uncertainty in the power prices is considered within a given portion of 

the optimization horizon. In turn, Karwan and Keblis (2007) developed a mixed-integer programming 

formulation embedded in a rolling horizon procedure to minimize the cost of running an air separation 

unit under real time pricing (RTP). They also conducted simulation studies to assess the robustness of the 

production plans obtained and investigated the conditions under which a RTP scheme is more attractive 

than time of use (TOU), which refers to fixed electricity prices for daily, weekly, or seasonal blocks of 

electricity. They found out that RTP is preferred over TOU when there is more production flexibility, i.e. 

conditions such as lightly loaded plants or short ramp-up times. In turn, Mitra et al. (2012a) developed a 

mixed-integer programming model for optimal production planning of processes such as air separation. 

While considering known electricity prices for a time horizon of one week, they include the modeling of 
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transition times and costs between production modes and improve the tightness of the MILP model. As an 

additional contribution, long-term strategic investment decisions were considered using cyclic short-term 

production schedules that take into account seasonal electricity cost fluctuations (Mitra et al., 2012b). 

On the distribution side, a description of the inventory routing problem, its main characteristics, and 

a survey of relevant literature can be found at Campbell et al. (1998) and Bertazzi et al. (2008). Kleywegt 

et al. (2002) provide a categorization of the variants of the inventory routing problem (IRP) that have 

been studied by different researchers. Also, refer to the recent paper of Coelho et al. (2013) for the history 

of IRP and a review of different exact and heuristic approaches considered to solve wide variety of IRP 

problems. Taking into account customer demands, relevant IRP formulations include either deterministic 

(Dror et al., 1985; Chien et al., 1989; Jaillet et al. 2002; Campbell et al. 2004; Benoist et al., 2011) or 

stochastic (Dror and Ball, 1987; Çetinkaya and Lee, 2000; Kleywegt et al., 2002) approaches. The most 

simplified IRP is NP-hard as it contains the classical vehicle routing problem (VRP). Therefore, to solve 

the IRP, most research works have focused on heuristic solution approaches given its complexity. In 

many contributions the IRP problem is decomposed into sub-problems, e.g. Campbell et al. (2004), which 

are solved by approximate or exact methods (i.e. Branch and Cut or Column Generation). In some cases, 

heuristic methods are applied to the sub-problems in order to identify upper and lower bounds. Some of 

the studies provided integrated and iterative approaches and evaluated the effectiveness of integrating 

routing and inventory decisions in their models. Others have proposed heuristic methods to be compared 

with approaches used in industrial-gas industry (Dror and Ball, 1987; Campbell et al., 2002). We should 

also note that several papers dealing with the infinite horizon problem use a distribution policy that is 

similar to the fixed partition policy (first introduced by Anily and Federgruen, 1993), direct deliveries, 

order-up-to level policy and zero-inventory ordering (Bertazzi et al., 2002; Chan et al., 1998).  Fixed 

partition policy specifies regions (subset of customers) covering all customers and always replenishes the 

customers in the same region together. Distribution policy of order-up-to always fills a customer up-to its 

inventory capacity, whereas in zero-inventory ordering an order is placed only when its inventory drops to 

zero. Examples of applications combining vehicle routing with inventory management at customer sites 

for industrial gas distribution are presented in the seminal work of Bell et al. (1983), and more recently by 

Campbell et al. (2002). 

A comprehensive review of the literature addressing supply-chain coordination either at the 

operational or the strategic planning level is presented by Thomas and Griffin (1996). The potential of a 

better coordination between production, inventory, and distribution activities has been initially explored 

by Chandra and Fisher (1994). They presented a computational study to examine the value of a better 

coordination between production and distribution. The study considered a single plant and multiple 
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products, which are delivered to multiple retail outlets by a fleet of vehicles. They developed both an 

integrated formulation and a decoupled production and distribution model, and analyzed multiple test 

cases with alternative values for the main problem parameters (length of horizon, number of products and 

retail stores, setup, inventory holding, and vehicle travel costs). Reductions ranging from 3 to 20% of the 

total cost were reported by comparing the solutions obtained. This work has been followed up by several 

authors including Fumero and Vercellis (1999) and Park (2005). Focusing on industrial gas supply-

chains, Glankwamdee et al. (2008) developed a simplified production and distribution planning linear 

model. In order to account for uncertainty, they extended this formulation both via a minmax model and a 

two-stage stochastic program, and tested the effectiveness of the proposed methods using simulation. 

However, only time-aggregated planning decisions were considered and neither plant mode selection nor 

vehicle routing details are included in the model. Also, You et al. (2011) developed a mixed-integer linear 

programming model to integrate long term planning decisions of sizing storage tanks at customer 

locations with truck routing decisions at the operational level. They also propose two efficient 

computational methods in order to solve large-scale instances, one based on a two-level decomposition 

strategy and the other on a continuous approximation approach for the routing decisions. 

3. Problem Statement and Main Assumptions 

3.1 Overall Supply-Chain Problem 

The problem of production-distribution coordination of an industrial gases supply-chain can be 

stated as follows. Given are the following items: 

(i) a set of industrial gases production plants p∈P, 

(ii) a set of production modes or unit configurations m∈Mp in which plant p can operate at any 

given time, 

(iii) a set of liquid products i∈I to be considered in the supply-chain, and the specific products 

i∈Ipm that are produced while plant p operates in mode m, 

(iv) the production rate limits ( min
pmiw , max

pmiw ) and the energy consumption per unit of product 

(usppmi) for each product i, plant p, and mode m, 

(v) the maximum storage capacity max
piQ  for product i at plant p, and the initial inventory ini

piL  of 

each product,  

(vi) a set of customers c∈Ci for each product type i, the maximum capacity max
cQ  of the storage 

tank at customer c, and the initial inventory level ini
cL , 
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(vii) a set of depots d∈D, where trucks k∈Kdi are available for the delivery of each product i, 

(viii) the maximum capacity truck
kU and the travel cost per unit distance ck of each truck k, 

(ix) the locations of plants, depots, and customers, allowing to calculate route distances, 

(x) the time horizon H divided in consecutive time periods t∈T, each one with duration ∆t, where 

at least two time periods per day are considered (i.e., half day peak and off-peak time 

periods), 

(xi) the electricity price forecast upt for each plant at each time t∈T, 

(xii) the forecast of the product consumed, Rc,t, and the estimated required safety stock, min
ctQ , at 

time t for each customer c∈Ci.  

The goal is to determine operational level decisions for each time period t including the following: 

the mode of operation and production rate of the final products at each plant, the amount of inventory 

maintained for each product at each source and customer location, and the amount of each product to be 

delivered to customers through the routes to be selected. The objective function is to minimize the total 

cost of production and distribution for the entire supply-chain. 

Figure 2 shows an example of an industrial gases supply-chain as addressed in this paper, which 

consists of a set of plants (P), depots (D), and customers (C). As mentioned before, while we do not focus 

on the production of gaseous products, we do take into account the situation when a given plant has a 

limited production capability and liquid inventory must be gasified to fulfill the gaseous customer 

demand. We assume here that at each time t the forecast of the liquid volume to be gasified and sent by 

pipeline, site
tpiR , , is known. It is also assumed that the following additional information is given: (a) the 

initial operational state of each plant p (i.e., ini
pb  = 1 when plant p is running at the beginning of the time 

horizon), (b) the fixed start-up cost start
ptF  if plant p needs to be powered up at time t, and (c) the 

minimum inventory level min
pitQ  (redline) allowed for product i at plant p at any given time. 

If multiple product grades j∈Ji can be manufactured for a given product i, the product grade 

j = grade(p, i) associated with product i at plant p is also available. The set of plants p∈Pci from which 

product i can be delivered to customer c, or the set of product grades j∈Jc that can be delivered to 

customer c must be specified. Furthermore, while deliveries are primarily made by sourcing the product 

from plants of the company, in situations in which there are shortages the product must be purchased from 
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an alternative source p∈Palt.  In this case the price per unit volume ( purchase
tpiC , ) and the maximum amount 

of product that can be purchased ( purchase
tpiQ , ) for each product i and time t are assumed to be known. 

The savings through full production-distribution coordination are quantified using a model that, 

while being approximate, has a sufficient level of details to be realistic. On the production side, the 

changeover times and costs required to switch between production modes are assumed to be negligible. 

On the distribution side, the detailed hourly scheduling of the drivers and the assignment of the trailers 

attached to each truck are not considered. Instead, a unique combination of truck/trailer/driver called 

“truck” is used, disregarding the potential unavailability of drivers or trailers. The distribution costs are 

exclusively based on distances, not on the time spent to deliver to the customers, which means not 

considering the exact calculation of loading/unloading, traveling, and waiting times. Besides, complex 

schedules allowing multiple trips per shift or layovers are not possible. Some of these features can be 

handled by adding average transition costs between production modes, limiting the number of vehicles for 

a given time period, or forbidding the selection of routes that do not satisfy specific timing or distance 

constraints.  

 

 
Figure 2: Industrial gas supply-chain illustrative example. 

 

3.2 Coordination Levels for Production and Distribution  

The production-distribution coordination problem can be studied at various levels of coordination. 

In this paper, we introduce definitions for the various levels of coordination of an industrial gas supply 

chain (see Table 1).  

The sequential coordination strategy refers to the approach of first generating a production schedule 

based on the historical data on the behavior of distribution (e.g. statistics on truck withdrawals) or other 

sources of information, and then generating an optimal distribution schedule based on the inventory levels 
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(as a result of the production schedule calculated before) and associated customer demands. In contrast, 

the simultaneous coordination strategy determines production and distribution schedules through a 

simultaneous optimization approach assuming knowledge of the information input on the production 

(electricity prices) and distribution sides (customers consumption/demand). Both strategies may be 

applied across multiple sources (dynamic sourcing) or limited to a single source (fixed sourcing). 

 

 
Sequential 

(Production then 
Distribution) 

Simultaneous 
(Production and Distribution) 

Single plant/depot 
(Fixed Sourcing) 

No Coordination  
b/w plants and production-

distribution 

Coordination 
b/w production-distribution  

but  
No coordination b/w plants 

Multi-plant/depot 
(Dynamic Sourcing) 

Coordination b/w plants  
but  

No Coordination b/w 
production-distribution 

Coordination 
 b/w production-distribution 

as well as plants 
(fully coordinated) 

 

Table 1. Production-Distribution Coordination Levels 

 

Only operational decisions concerning the existing supply-chain are considered. Design decisions 

concerning investments in new installations or expansions are not included. Furthermore, while in a real 

scenario electricity costs and customer demands are subject to uncertainty, in this contribution we do not 

take into account any uncertainty in the forecasted data. Besides, the production and distribution decisions 

are limited to the time horizon given. Consequently, the tradeoff between short term savings and reducing 

the long term overall cost is not explored.    

The proposed “fully coordinated” MILP model for the multi-source simultaneous case is described 

in the next section. The models corresponding to the remaining levels of coordination described in Table 

1 are obtained from the fully coordinated formulation as a special case.  

4. Simultaneous Production-Distribution Model 
 

In order to develop a model that simultaneously optimizes production and distribution decisions 

over a finite time horizon, the first step is to define an adequate time representation. In this contribution a 

uniform discretization of the time horizon H is used. Thus, a finite number of time periods t∈T is given 
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during which both production and distribution events take place. The usual scheme is, for instance, to 

consider two time periods per day following peak and off-peak electricity price intervals. The model 

constraints for production and distribution decisions are described next, followed by the objective 

function to be used. 

4.1 Production Side 

Constraints (1)-(9) model the production side of the supply-chain. For a given time period t, the main 

model decisions are the operating modes and production rates at each plant, from which the power 

consumptions and product inventory levels are derived. 

4.1.1 Selection of production modes at each plant 

The binary variable Bpmt is introduced to represent that plant p operates in mode m at time period t. Each 

plant can operate at most in a single mode during time t, this condition being enforced by constraint (1). 

When Bpmt = 0 ∀m∈Mpt then plant p is not in operation (shut-down mode) during time period t. 

 

TtPpB
ptMm

pmt ∈∈∀≤∑
∈

,1  (1) 

 

When a plant starts operating, there is a cost of transitioning from shut-down to any valid mode m∈Mpt. 

This start-up cost usually corresponds to the cost incurred while running the plant until the required 

operating conditions are reached.  For example, during this start-up phase, electricity may be consumed 

while the output of the air separation units does not meet product grade specifications. 

Constraints (2) and (3) are included to detect the transition from shut-down mode to any other mode m. 

The binary variable start
ptb  is 1 if plant p is shut-down in the previous time period t – 1 and is turned on 

when time period t begins. In particular, constraint (2) represents this condition for the first time period t0, 

while constraints (3) correspond to the rest of the time periods. Eqn (2) is only needed if the plant is 

initially in shut down mode (i.e., 0=init
pb ).  Notice that with the constraints (2) and (3) it is possible to 

define start
ptb  as a continuous variable in the interval [0, 1]. 

 

)0(:
0

0,

0 ,,, =∈∀≤∑
∈

init
p

start
tp

Mm
tmp bPpbB

tp

 (2) 

0)1( :,
)1(

ttTtPpbBB start
pt

Mm
tpm

Mm
pmt

tppt

>∈∈∀+≤ ∑∑
−∈

−
∈

 (3) 
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Different costs may be considered for each possible transition from one production mode to another; 

however, in the current model the only cost considered is the transition cost to start-up the plant. 

 

4.1.2 Production rate limits and power consumption  

On each operating mode, production capacity constraints that limit the rate of production of each product 

i must be considered. Let the continuous variable Wpmit represent the production rate of product i at plant p 

while running mode m in time period t. Constraint (4) establishes both the lower ( min
pmiw ) and upper ( max

pmiw ) 

bounds for the production rate of every product i that can be produced in mode m, given that mode m is 

on at time period t (Bpmt = 1). If a given mode m is not selected (Bpmt = 0), then all production rates for that 

mode are driven to zero. For some configurations the minimum production rates can be defined by the 

relation maxmin
pmippmi ww η= , where pη (e.g. 70%) is the turn-down ratio defined for plant p.  

 

TtPpMmIiwBWwB ptpmpmipmttpmipmipmt ∈∈∈∈∀≤≤ ,,,max
,

min  (4) 

 

Moreover, additional constraints limiting the total liquid production for a given production mode m at 

plant p can be specified by Eqn (5), where the parameters  ,pm iλα  and ,pm λπ   are the coefficients and 

upper bound, respectively, for a linear combination of the production rates of every product i. The set 

LIMm stands for the limits of the feasible region of production mode m, where each λ is associated to a 

limiting hyperplane. Notice that in each mode m we assume that the plants are flexible enough to operate 

anywhere within the limits given by Eqns (4) and (5). 

 

, , , , , ,
pm

pm i pmi t pmt pm m pt
i I

W B LIM m M p P t Tλ λα π λ
∈

≤ ∀ ∈ ∈ ∈ ∈∑  (5) 

 

The power consumption of plant p in time period t is given by Eqn (6), where the parameter usppmi is the 

energy requirement per unit of product i (unit specific power) when plant p operates in production mode 

m. 

 

( ) TtPpWuspPW
pt pmMm Ii

tpmipmitp ∈∈∀⋅= ∑ ∑
∈ ∈

,,,   (6) 
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4.1.3 Inventory constraints at plants 

Storage is assumed to be available at the plants to keep the inventory of every product i∈Ip. The 

continuous variable Lpit stands for the inventory level of liquid product i at plant p at the end of time 

period t. Equation (7) establishes the lower and upper bounds for the level of product i, which must lie 

between the minimum level (redline) and the maximum storage capacity of the facility for that product. 

The minimum inventory level ensures that excess demand of over-the-fence/on-site gaseous customers 

can be met using this inventory as a back-up source. Moreover, this redline ( min
pitQ ) is a given parameter 

that may vary over the planning horizon (not constant) based on the gaseous customer demand profile, 

while the maximum limit max
piQ  is related to the physical capacity of the storage facility (a constant value) 

for product i. 

 

TtPpIiQLQ ppipitpit ∈∈∈∀≤≤ ,,maxmin  (7) 

 

The material balance constraints (8) are required to keep track of the inventory level of product i at each 

time period t. In particular, the amount of product in storage at plant p is equal to the inventory of the 

product at the previous time period, plus the production over time period t, minus both the total amount of 

product supplied on-site ( site
tpiD , ) and the total product distributed by trucks ( truck

tpiD , ) at time t. The variables 

site
tpiD ,  and truck

tpiD ,  are introduced in the next sections. Also, for the first time period the value of Lpi,t-1 is 

given by the  inventory level of the plant when the time horizon begins ( ini
piL ).  

 

TtPpIiDDWLL p
truck

tpi
site

tpi
Mm

tpmittpitpi
ipt

∈∈∈∀−−∆+= ∑
∈

− ,,,,,1,,
,

 (8) 

 

Material balance constraints (8) are the main constraints that connect the production and distribution sides 

of the supply chain.  

 

4.1.4 Gaseous customer supply  

As indicated by Equation (9), the amount of product distributed on-site for each time period t is defined as 

the gaseous volume supplied by vaporization through the pipeline to an over-the-fence customer sitting 

near the plant. This vaporization of liquid product is needed only when the gas can not be supplied from 
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the separation column because the plant is shut down. The parameter site
tpiR ,  is the demand forecast of the 

over-the-fence customer for product i. 

 

TtPpIiBRD p
Mm

pmt
site

tpi
site

tpi
pt

∈∈∈∀









−= ∑

∈

,,1,,  (9) 

 

4.2 Distribution Side 

The main distribution decisions include the amount of product being delivered from a given source, the 

truck being used,  and the set of customers being visited within a given time period. We assume here that 

a truck performs a round-trip on each time period t. While this assumption is valid most of the time, in the 

general case a driver can eventually complete two or three trips in a single shift before finishing his 

working hours. To allow several short trips in a single shift, the duration of each time period may be 

reduced to obtain a more accurate discretization of the time horizon. However, this increases the model 

size and the computational effort required to find solutions that are accurate enough (just dividing each 

time period by two duplicates the number of binary variables and constraints of the model). Besides, it is 

also assumed that a single trip starts and ends at the same depot from which the truck departs. While the 

inventory capacity constraints are verified only at the time interval limits, it is assumed that truck loading 

and unloading tasks may occur anytime within these limits and that there is enough capacity available to 

accommodate the production-distribution schedule if needed. 

If multiple combined trips are needed, the problem becomes a multiple source pick-up and delivery 

problem, a level of detail that is not tackled in this contribution. Multiple trucks, multiple sources and 

multiple alternative routes generate a combinatorial explosion of the number of alternatives to be explored 

on the distribution side of the supply-chain. 

 

4.2.1 Selection of routes 

Each truck is assigned to a fixed depot and dedicated to transport a unique kind of product. Thus, the set 

of trucks k∈Kdi is defined for every depot d and product i. As shown in Figure 3, distribution by trucks is 

accomplished by the following steps: (a) a truck k travels from its depot d to a valid source location (i.e., a 

related plant p), (b) product i is loaded at plant p such that the truck capacity truck
kU  is not exceeded, (c) 

truck k visits a set of customers s (one or more) and delivers the product, which is distributed in any 

required proportion among them, and (d) truck k travels back to its depot. Therefore, given the depot d, 
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the plant p, and a set of customers s, the route with the shortest distance (disdps) to complete the delivery 

can be calculated a-priori (pre-processed).  

 

 

Figure 3. Routes are determined by combining a depot, a plant, and a customer set. 

 

The binary variables Ykpt and ykst are introduced to indicate whether or not truck k is associated to plant p 

and customer set s, respectively, at time period t. Since each truck is associated to a known depot, there is 

no need to decide on the depot to be used on a given trip. Constraints (10) and (11) together indicate that 

each truck k can only be assigned to a single route on each time interval t. Equation (10) represents the 

fact that a truck k can be assigned to a single set of customers per time period. If the LHS is one, then the 

truck k is delivering product at time t.  

 

TtDdIiKky di
Ss

kst
di

∈∈∈∈∀≤∑
∈

,,,1   (10) 

 

The set Sdi stands for all the customer sets associated with routes for product i that start at depot d. 

Because of Equation (10), at most one customer set s is selected for truck k to visit at each time period t. 

In turn, each customer set s can include one or more customers. Since the number of possible sets s grows 

very fast with the number of customers of product i (i.e., | Ci |), an effective route selection method is 

required to keep the model size reasonable. Appendix A describes the route selection method used herein, 

which is based on the idea of enumerating all feasible routes, sorting them using an economic criterion, 

and selecting the most appropriate ones while guaranteeing a minimum number of routes for each 

customer. Practical sorting criteria are either the route distance or an estimation of the cost per volume 

sourced for the route.  

Given Equation (10), Equation (11) establishes that a sourcing plant is required if and only if truck k is 

delivering product at time t.  
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The set Pdi includes all the plants that are authorized to source product i by loading a truck from depot d. 

Section 4.2.7 will further discuss possible delivery restrictions that apply when taking into account 

different product grades. 

 

4.2.2 Truck load constraints 

Continuous non-negative variables Ekpt and ekst are introduced to handle the quantity of product delivered 

by truck k. The variable Ekpt represents the amount of product loaded by truck k at plant p in time period t, 

while the variable ekst is the amount delivered by truck k to customer set s in the same time period. Since 

only one source is allowed for a given truck, constraint (12) guarantees that only the appropriate variable 

Ekpt is nonzero for some p∈Pdi.  

 

TtDdIiPpKkUYE didi
truck
kkptkpt ∈∈∈∈∈∀≤ ,,,,  (12) 

 

Also, constraint (13) states that the variable ekst can be nonzero only if truck k delivers to the customer set 

s (ykst = 1). 

 

TtDdIiSsKkUye didi
truck
kkstkst ∈∈∈∈∈∀≤ ,,,,  (13) 

 

Finally, given the aforementioned bounds for variables Ekpt and ekst, Equation (14) is needed to ensure that 

the amount of product picked up at a given plant is the same one being delivered to the selected 

customers, for each truck k and time period t. 
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4.2.3 Plant pick-up and customer delivery amounts 

Given equations (12)-(14), three additional constraints are needed to connect both sides of the supply-

chain.  

On one hand, Equation (15) defines the amount of product i delivered by truck from plant p at each time t 

(i.e., truck
tpiD , ) as the summation of the product loaded by every truck that stops at p at that time period. 

Delivery limitations established for the depots are taken into account by including the condition p∈Pdi.  
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On the other hand, Eqns (16) and (17) are used to determine the total amount of product delivered to a 

given customer c at time t (Dc,t). Constraint (16) ensures that the product being delivered to each customer 

set s is split among the customers c∈s. To this end, the continuous variable dsct is introduced to indicate 

the amount of product that customer c receives at time period t from all trucks that deliver to customer set 

s at that time. Notice that the LHS of Eqn (16) is the amount of product carried by all trucks that visit 

customer set s, and the RHS is the amount delivered to the customers in s. Moreover, the set Si includes 

all customer sets for a given product i.  
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Finally, constraint (17) calculates Dc,t as the summation of all the deliveries being made to c through all 

relevant sets s.  

 
∑
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Figure 4 depicts the material flow represented by the material balance constraints (15), (14), (16) and (17) 

and defined with the continuous variables truck
tpiD , , Ekpt, ekst, dsct, and Dc,t. Also, Figure 5 shows in more 

detail the interpretation of the material balance constraint (15) when multiple trucks from different depots 

load product at plant P1.  
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Figure 4. Distribution side continuous variables used to represent the delivery of liquid products from 

plants to customers. 

 

 

 
Figure 5. Loading of multiple trucks at a given plant. 
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4.2.4 Route distances 

The next set of constraints is needed to determine the distance traveled by a truck k when a delivery is 

made at time period t. As mentioned before, given the depot d, source p, and destination s (i.e. a set of 

customers) associated with each possible trip, the shortest traveling distance (disdps) can be calculated a 

priori. This can be done either by enumerating all possible alternatives or using a specific TSP algorithm, 

mainly because the number of customers in every customer set s is relatively small.  

For each truck k∈Kdi departing from depot d at time period t, its selected route will be determined by the 

specific binary variables Ykpt (p∈Pdi) and ykst (s∈Sdi) that are equal to one. However, since the information 

on the route is disaggregated on these binary variables, it is not straightforward to calculate the distance 

traveled by truck k.   

Using the parameter disdps, Eqn (18) defines the minimum distance ( min
dsdis ) required to deliver product i 

to the set of customers s⊂Ci using any truck from depot d. In other words, the parameter min
dsdis  is the 

traveling distance for the closest plant, taking into account a route with a fixed depot d and customer set s.  

 

DdIiSsdisdis didpsPpds
sdi

∈∈∈∀=
∈

,,][min
,

min  (18) 

 

Given the parameter min
dsdis , if a source different than the closest one is used, then an additional distance 

must be added in order to account for the correct delivery cost.  

To this end, a non-negative continuous variable βkt is introduced, representing the distance added to 
min
dsdis  to account for a source different than the closest one (usually the default source). Constraint (19) 

sets the lower bound for variable βkt based on the source and customer-set decision variables, where the 

parameters δdps and max
,idpδ  are defined in equations (20) and (21).  The parameter δdps represents the 

additional distance needed between the minimum ( min
dsdis ) and the complete distance (disdps), when plant 

p is selected.  

Furthermore, max
,idpδ  is the maximum distance δdps taking into account all routes associated to depot d and 

product i. When Ykpt = 1 (i.e. the plant p has been selected for the truck k), the RHS of constraint (19) 

becomes equivalent to βkt, and the summation on the LHS provides the adequate lower bound for the 

additional distance to be considered. Otherwise, Ykpt = 0 and variable βkt can always be driven to zero 

while Eqn (19) is still satisfied.  
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with the definition of the following parameters: 

 

DdIiPpSsdisdis dididsdpsdps ∈∈∈∈∀−= ,,,minδ  (20) 
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Finally, the distance traveled by truck k in time period t is given by the continuous variable DISkt, which is 

defined in Eqn (22). The RHS includes: (a) the minimum distance required to deliver product i to 

customer set s from the plant that is more conveniently located and (b) the additional distance βkt that is 

needed if a different plant is selected.  

 

TtDdIiKkydisDIS diktkst
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Figure 6 shows an example where a given truck k1 from depot D1 is delivering product to customers c1, c2, 

and c3 (i.e., customer set s1). Two alternative routes are shown: r1 = (D1,P1,s1) and r2 = (D1,P2,s1). Thus, 

the minimum distance needed to make the delivery is 
11111 ,,

min
, sPDsD disdis = , where P1 is the closest plant. 

Moreover, the additional distance if plant P2 is selected is given by min
,,,,, 11121121 sDsPDsPD disdis −=δ . If 

1,, 11
=tsky  and 1,, 11

=tPkY  then 
111111 ,,

min
,, sPDsDtk disdisDIS == . Otherwise, if 1,, 11

=tsky  and 1,, 21
=tPkY  then 

tksDtk disDIS ,
min

,, 1111
β+=  and because of Equations (18)-(20) we have 

1211 ,,, sPDtk δβ ≥  from which 

1211 ,,, sPDtk disDIS ≥  can be derived. 
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Figure 6. Routes with alternative sources for the same depot and customer set. 

 

4.2.5 Inventory constraints at customer sites 

The inventory level at customer locations must also be tracked by the model. For each customer c∈Ci, the 

level of product i inventory at the end of time t (Lct) must lie between the minimum desired level (safety 

stock) and the maximum storage capacity of the tank as established by Eqn (23). Notice that the safety 

stock can be given as a parameter with variations over the planning horizon based on the consumption 

profile of that particular customer. 

 

TtIiCcQLQ icctct ∈∈∈∀≤≤ ,,maxmin  (23) 

 

Constraint (24) represents the material balance constraint for the inventory of product i at each customer 

location. In particular, the amount of product i in the customer storage tank in time period t is equal to the 

inventory of that product at the previous time period, plus the product delivered to the customer in time 

period t, Dct, less the amount of product consumed by the customer,  Rct, in the same time t. For the first 

time period t0, the inventory at the previous time period t – 1 will be given by the initial inventory of 

product i at customer c ( ini
cL ). 

 

TtIiCcRDLL ictcttcct ∈∈∈∀−+= − ,,)1(  (24) 
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As an alternative to Equations (23) and (24), Appendix B presents the constraints required when the 

volumes and time windows for each delivery are specified beforehand (planned deliveries).   

 

4.2.6 Deliveries from alternative sources 

Industrial gas customers usually have strict requirements on product availability bound by specific 

contractual obligations. In general, the golden rule for any industrial gases provider is that a customer 

must never run out of product. Thus, if the available inventory at the owned plants is not enough to fulfill 

some required obligations, then the product must be provided by purchasing it from an alternative source 

in order to replenish any customer inventory levels that are subject to redline conditions in a timely 

manner.  

In this section we indicate the changes in the mathematical model required to handle the possibility of 

purchasing product from an alternative source. To this end, the set of plants P is split into two disjoint 

subsets Pown and Palt, standing for the owned plants and the alternative sources (i.e. typically plants owned 

by other companies). By doing this, the set P must be replaced by Pown in the Eqns (1)-(9) that model the 

production side of the supply chain (see Section §4.1). However, constraints (11), (12), (14), (15), and 

(18)-(21) defined in Sections §4.2.1 to §4.2.4 remain unchanged, since now the set altown PPP ∪=  also 

includes the alternative sources. For each additional source p∈Palt, variables Ykpt and Ekpt are also 

included. Given these modifications, the total amount of product i purchased at an alternative source 

p∈Palt at time period t ( truck
tpiD , ) is still defined by Eqn (14). Besides, the maximum amount of product i 

that can be purchased at time t is now given by the parameter purchase
tpiQ , , as indicated by Eqn (25).  

 

TtPpIiQD alt
p

purchase
tpi

truck
tpi ∈∈∈∀≤ ,,,,  (25) 

 

4.2.7 Sourcing and product grade constraints 

Different grades of industrial gas products can be easily handled by the proposed method. For example, 

when liquid oxygen (LOX) is considered, a distinction may be made between industrial LOX and medical 

LOX, since they have different product purities. While it is possible to handle the different product grades 

as different products, this approach may turn out to be over-restrictive. For example, a customer 

requesting a lower grade product could also receive a higher grade, as long as the required purity 

specifications are met. Given that each plant p produces a grade j = grade(p, i) for product i, let us 

consider the binary relation of product grades R(j, j’) such that the demand of a customer requiring j can 

be fulfilled by delivering j’. Thus, R should be a reflexive and transitive relation. Based on this relation a 
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set Jc including all product grades that can be delivered to customer c can be obtained. Consequently, the 

set of plants from which product i can be sourced to a given customer set s is:  

 

{ } IiSsJipgradePpP icscs ∈∈∀∈∈= ∈ ,),(:   

 

A customer set s should not be considered in the model if Ps = ∅. Eqn (26) defines the set Spi, which 

includes all customer sets where product i of plant p can be delivered. The definition piPpdi SS
di∈= 

should be employed when Eqn (26) is used. 

 

{ } IiPpPpSsS sipi ∈∈∀∈∈= ,:  (26) 

 

With the above definitions, constraint (27) must be added to the mathematical formulation to handle 

multiple product grades for a given product i, representing the possibility to deliver products of higher 

purity if available to customers who require a lower grade of the same product.  
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In general, constraint (27) can be applied to restrict the selection of the customer sets s that can be sourced 

from plant p, when using a truck from depot d. To this end the set Spi must be replaced by a set Spi,d, which 

also takes into account the depot. For example, this situation appears when a route given by d, p, and s 

exceeds a given maximum distance. 

 

4.2.8 Tightening constraints 

Valid cuts that do not eliminate integer solutions from the feasible space are added to the mathematical 

model in order to improve its computational performance. The proposed cuts are intended to tighten the 

LP relaxation by improving the calculation of the distribution cost.  

Let ),( 21 ttcµ  with t1 ≤ t2 be the summation of the product consumed by customer c in the interval from 

time period t1 to time period t2, as stated by Eqn (28).   
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Tightening constraint (29) imposes that at least one delivery must be made to each customer c within a 

given interval [t1, t2]. The LHS of (29) is the number of trucks visiting all customer sets s that include c 

within the proposed interval.  
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The selection of the intervals for which Eqn (29) is defined is explained next. The maximum inventory 

available at customer c between two consecutive replenishments is given by the expression minmax
cc QQ − . 

If the product consumed between t1 and t2, i.e. ),( 21 ttcµ , is higher than this difference a delivery must be 

made to customer c within [t1, t2]. This condition is therefore necessary for Eqn (29). Besides, to avoid 

redundant additional constraints the condition minmax
21 )1,( ccc QQtt −≤−µ  is also needed. For instance, 

let Eqn (29) be defined for a given interval [t1, t2]. Then, for any t3 > t2 the condition 
minmax

31 )1,( ccc QQtt −≤−µ  does not hold because minmax
2131 ),()1,( cccc QQtttt −>≥− µµ . In this way 

the constraint (29) is included only for the shortest time interval starting at each time period t1. When t1 is 

the first period of the time horizon, max
cQ  can be replaced by the initial inventory of customer c ( ini

cL ) 

without loss of generality. 

 

4.3 Objective Function 

The proposed mathematical model seeks to minimize the overall cost of production and distribution for 

the entire time horizon. The objective function is given by Equation (30). Equation (31) defines the 

production cost for each time period t, which is given by the start-up and variable production costs of 

each plant. Besides, Equation (32) sets the distribution cost at time t as the cost of all deliveries made by 

every truck plus the cost of the product purchased from the alternative sources at the given time period. 

We should note that we are not including inventory cost as it is normally a minor cost compared with the 

production and distribution costs. However, it is clear that inventory costs can be trivially included in 

(30). 
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4.4 Modeling different levels of production-distribution coordination 
 

The simultaneous production-distribution coordination model is given by Equations (1)-(27) and 

objective function (30). This fully coordinated model is referred as model (M1). Sequential models are 

derived from (M1) by decomposing the production and distribution optimization into two separate 

programs that will be connected through a sequence of decisions involving both. We introduce first the 

production optimization model (M2) generating the production side schedule that minimizes the total cost 

of production. This model includes the constraints (1)-(9), with objective function (33).  

 

( )∑
∈Tt

tPCostMinimize  (33) 

 
Two options have been considered to set the production targets: either trucks withdrawals truck

tpiD ,  are 

forecasted directly based on historical frequencies (M2.a) or planned deliveries are set for each customer 

based on its consumption forecast, storage capacity, and historical delivery data (M2.b). Equation (34) 

fixes the variable truck
tpiD ,  for the model (M2.a). In this case, the truck withdrawal volume in each time 

period t is given by the parameter withdraw
tpiU , . Alternatively, when the production side model (M2.b) is 

used, Equations (35) and (36) are employed to determine how much product is delivered to each customer 

in order to fulfill their forecasted demands. The parameter deliv
ttcU
21,,  indicates the volume of product i to be 

delivered to customer c∈Ci during the time interval [t1, t2], where t1 ≤ t2. Besides, the variable pctσ  is 

introduced representing the product delivered from plant p to customer c at time t. 
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Finally, we introduce the distribution side optimization program (M3) generating the distribution schedule 

that minimizes the total distribution cost. Constraints (7)-(9) and (11)-(27), with objective (37) are used. 

We assume that the variables that handle production mode selection (Bpmt) and production rate (Wpmi,t) are 

fixed taking into account a solution of a previously solved model (M2). 
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To show the potential impact of a better coordination of production and distribution decisions, we 

compare the simultaneous model (M1) with the sequence (M2) → (M3), the later being to determine the 

production decisions first and then observing the consequences on the availability of product before 

solving the distribution model. 

5. Results and Discussion 
 

The models (M1), (M2) and (M3) were implemented in GAMS 24.1.3 and solved using the commercial 

solver CPLEX 12.5.1. Computational results were obtained on an Intel Core i7-960 (3.20 GHz, 4 cores) 

machine with 16 GB of RAM. All instances were solved using the parallel processing capacities of the 

machine and a relative gap tolerance of 0.01, otherwise default solver setting were used. Two examples 

including simultaneous production decisions at multiple plants and distribution decisions at multiple 

depots are presented. Besides, the application of the proposed model to industrial size problem instances 

is discussed. 

5.1 Example 1 

A first small test case is presented featuring two plants and two main products (LIN i.e. liquid nitrogen 

and LOX i.e. liquid oxygen). A unique grade is considered for each product. The plants can be operated in 

two production modes (High LIN and High LOX) with specific capacity limits. For each plant and 

product, Table 2 includes the maximum rate for each production mode together with the inventory levels, 
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maximum storage capacity, and redline (minimum level). The minimum production rates are established 

by a turndown ratio of 60% for plant P1 and 70% for plant P2. All product quantities are given in thousand 

standard cubic feet (Mcf). Figure 7 shows the feasible production rates for each plant and production 

mode. The unit specific power is 20 kWh/Mcf for every plant, product, and production mode. Besides, we 

assume that both plants are initially running, and the associated start-up costs are $7,000 for plant P1 and 

$4,000 for plant P2.  

 

Table 2. Plant production and storage data for Example 1  

Plant  P1 P2 
Unit 

Product  LIN LOX LIN LOX 

wmax Mode Hi LIN 108 95 100 105 Mcf/h 
 Mode Hi LOX 190 37 185 48  
Inventory  Initial 3,500 4,800 4,700 4,000 Mcf 
 Maximum 9,000 6,300 8,100 7,000  
 Redline 3,000 2,100 2,500 1,750  

 

 

 
Figure 7. Production rate limits for each operating mode and plant for Example 1. 

 

There is a depot located beside each plant. Depot D1 is located at plant P1 and has 5 trucks, 3 with a trailer 

for LIN and 2 with a trailer for LOX. Also, depot D2 is located at plant P2 and has 4 trucks available, 2 for 

LIN and 2 for LOX. The transportation cost of trucks is 2.85 $/mile, and each trailer has a capacity of 630 

Mcf. The supply-chain includes 9 customers (5 LIN customers and 4 LOX customers) to be served by 
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truck delivery. Figure 8 shows a map including all plant/depot and customer locations, which are also 

indicated in Table 3. Straight line paths are used to calculate route distances. Table 4 includes the liquid 

product initial inventory level, storage capacity, and redline for each customer, together with the average 

consumption per day. The default source for LIN customers c1, c2, and c3 and LOX customers c6 and c7 is 

plant P1. The remaining customers are associated with plant P2. Thus, as it can be observed in Figure 8, 

the default source for each customer is the plant in closest proximity.  

 

 
Figure 8. Map for Example 1.  

 
Table 3. Location of plants, depots, and customers for Example 1 (miles). 

 Plant / Depots  LIN customers  LOX customers 

 P1/D1 P2/D2  c1 c2 c3 c4 c5  c6 c7 c8 c9 

X coord. 67.2 173.1  24.5 103.6 122.2 135.0 205.7  43.7 125.4 136.8 213.5 
Y coord. 64.5 90.2  43.9 123.3 46.7 132.6 43.1  107.5 27.3 65.1 107.4 
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Table 4. Customer inventory and consumption data for Example 1. 

 LIN customers  LOX customers 
Unit 

 c1 c2 c3 c4 c5  c6 c7 c8 c9 

Initial inventory 1750 2620 320 280 2640  920 2380 320 1760 Mcf 
Storage capacity 2940 3900 510 350 4380  1560 3800 430 2250  
Redline 940 1750 280 180 1520  590 1670 190 960  
Average consumption  900 1480 280 200 1260  440 1360 180 1000 Mcf/day 

 

 

The time horizon of one week is discretized into 14 time periods, each one with half day duration and 

corresponds to peak and off-peak electricity prices on a day. The forecast of the electricity cost at each 

plant over the whole time horizon is presented in Table 5. For both plants and customers, the lower 

bounds on inventory levels at the end of the time horizon are set as the available inventories when the 

time horizon begins.  

 

Table 5. Forecasted electricity prices (cent/KWh) at each plant for Example 1 

Time period  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

Electricity prices 
(cent/KWh) 

P1 4.76 4.06 4.37 4.17 4.45 4.06 4.22 3.94 4.25 3.98 4.17 3.94 4.51 4.07 
P2 3.12 2.98 3.11 2.96 3.13 2.72 2.98 2.67 2.91 2.74 3.04 2.80 3.14 2.84 

 
 
Given all the problem data presented above, Example 1 has been tested with different levels of 

production-distribution coordination and alternatives for plant sourcing. We consider the levels of 

coordination presented in Table 1. In particular, when analyzing the sequential approach of solving first 

the production and then the distribution model, we test both production targets presented in Section 4.4, 

either (a) truck withdrawal forecasts or (b) planned delivery forecasts. Table 6 presents the truck 

withdrawal targets for model (M2.a), and Table 7 presents the delivery targets per customer for model 

(M2.b). Data in Tables 6 and 7 is used to solve the production models (M2.a) and (M2.b), respectively, 

under the sequential coordination strategy. However, notice that customer consumptions given in Table 4 

are still the targets for the distribution side model (M3).  For every level of coordination between 

production and distribution, both fixed and dynamic sourcing alternatives are also tested. When fixed 

sourcing is considered each customer is served only by its default source, and no coordination between 

plants is possible. In this case a mathematical model is solved for each plant. Dynamic sourcing allows 

some customers to be served by different plants using vehicles from different depots during the time 

horizon. In this example, the shared customers that can receive product from both P1/D1 or P2/D2 are LIN 
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customers c2, c3, and c4, and LOX customers c7 and c8. All possible routes that visit up to two customers 

are included in the respective models. Overall, six alternative levels of coordination were tested with 

Example 1. 

 

Table 6. Forecasted truck withdrawals for model (M2.a) – Example 1.  

  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

P1 LIN 3 2 2 2 3 2 2 2 3 2 2 2 3 2 
 LOX 2 1 2 1 2 1 2 1 2 1 2 1 2 1 

P2 LIN 2 1 1 1 2 1 1 1 2 1 1 1 2 1 
 LOX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
 
Table 7. Planned deliveries per customer and time period for model (M2.b) – Example 1. 

  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

LIN c1 630 630 - - 630 630 - 630 630 - 630 630 630 630 
 c2 630 630 1260 630 630 630 630 1260 630 630 630 630 910 630 
 c3 330 - 280 - 280 - 280 - 280 - 280 - 230 - 
 c4 - 270 - 200 - 200 - 200 - 150 - 200 - 180 
 c5 630 630 630 630 630 630 630 630 630 630 630 630 630 630 

LOX c6 - 630 - 630 - - 630 - 630 - - 560 - - 
 c7 630 630 630 630 1260 630 630 630 630 630 630 700 630 630 
 c8 - 290 - - 270 - - 270 - - 270 - - 160 
 c9 - 630 630 630 630 - 630 630 630 - 630 630 630 700 

 
 
Table 8 shows the optimal solution values obtained by applying the proposed models for each alternative 

level of production-distribution coordination. If no coordination between plants or between production 

and distribution is considered, a total cost of $70,039 is obtained when the production is based on a 

forecast of truck withdrawals. However, by improving the coordination the total cost of production and 

distribution decreases. For instance, when better production targets based on planned deliveries are used 

and multiple plants/depots are considered, the total cost drops to $65,252, which is almost 7% less than 

the previous solution. Moreover, the best solution for the fully-coordinated model (M1) with dynamic 

sourcing has a total cost of $63,089, featuring potential savings of almost 10%. In a similar way, the 

remaining savings that can be obtained by a better coordination are also shown in Table 8.  

Figure 9 compares the production, distribution, and total cost for each level of coordination. In most cases 

the savings of the fully coordinated model comes from a lower production cost, obtained by re-
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distributing the production load between plants. From Table 5 it can be observed that plant P2 has lower 

electricity prices, which makes it convenient to allocate more production there. Thus, shared customers c2, 

c3, and c7 are candidates to shift sourcing from P1 to P2. For each alternative level of coordination with 

dynamic sourcing, the total volume sourced from each plant and to each customer is presented in Table 9. 

These amounts can be easily calculated based on the distribution side variables Ekpt, ekst, dsct, and Dct.  

Besides, a comparison of the overall volume sourced per plant and product is shown in Figure 10.  

 
Table 8. Total costs ($) and potential savings (%) due to better coordination for various levels of 

Production-Distribution Coordination (Example 1). 

Coordination  
Strategy 

Sequential  
Simultaneous  Production based on 

truck withdrawal  
Production based on 
planned deliveries 

Single plant/depot 
(Fixed Sourcing) 

70,039.73  
(reference) 

67,807.54  
(3.19%) 

67,145.51  
(4.13%) 

Multi-plant/depot 
(Dynamic Sourcing) 

69,239.94  
(1.14%) 

65,252.69  
(6.83%) 

63,089.46  
(9.92%) 

 
 
Table 9. Total volume sourced (Mcf) from each plant to each customer for the sequential and 

simultaneous coordination levels with dynamic sourcing – Example 1. 

   c1 c2 c3 c4 c5 c6 c7 c8 c9 

Sequential 
approach 

Truck  
Forecast 

P1 6,300 8,970 1,960 270   3,080 9,180 120   
P2   1,390   1,130 8,820   340 1,140 7,000 

Delivery 
Forecast 

P1 6,300         3,080 4,244     
P2   10,360 1,960 1,400 8,820   5,276 1,260 7,000 

Simultaneous Model 
P1 6,300 2,940 1,960     3,080 1,000     
P2   7,420   1,400 8,820   8,520 1,260 7,000 

 
 
A brief explanation of the results of Table 9 and Figures 9 and 10 is as follows. The sequential production 

model based on truck withdrawals (M2.a) uses as its production target an estimation of the number of 

full-load trucks required at each plant. Because this estimation is higher than the actual demand, some 

extra production is made in addition to the amount required by the default customers. Thus, the 

simultaneous distribution model (M3) is able to source some product to c2 and c7 using plant P2. However, 

the volume sourced from P2 to the shared customers is still restricted by the production targets. In turn, 

the best solution of the sequential model (M2.b) with production based on planned deliveries is different. 

In this case most of the volume required by customers c2, c3, and c7 is sourced from plant P2. While it 
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reduces the overall production cost, it turns out that trucks from depot D1 are required to deliver the 

product from plant P2, which increases the distribution cost.  Finally, the fully coordinated model takes 

into account both production and distribution resources to find a balanced solution that shifts most of the 

demand of c2 and c7 to plant P2, without significantly penalizing the distribution cost. 

The model size and computational statistics obtained by the application of the simultaneous coordination 

strategy (M1) with dynamic sourcing is presented in Table 10. The remaining production-distribution 

models applied to Example 1 have shown similar computational performance, with CPU times varying 

between 10 and 150 s. 

 

 
Figure 9. Cost comparison for the alternative levels of Production-Distribution Coordination. 

 

 
Figure 10. Product sourced per plant for each multi-plant coordination strategy (Example 1). 
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Table 10. Model size and performance for the multi-plant simultaneous production-distribution model 
(Example 1). 

 Multi-plant 
Simultaneous Model 

Binary variables 1,344 
Continuous vars. 2,395 
Constraints 2,916 
MIP solution 63,089.45 
CPU time  11.09 s 
Relative gap 1% 
Nodes 3,618 

 

5.2 Example 2 
 
A medium size example adapted from a real industrial size test case is presented next. Example 2 includes 

three plants producing two main products (LIN and LOX). Similar to Example 1, there is a unique grade 

for each product, and each plant can operate in two different production modes (High LIN and High 

LOX). Production rate limits for each facility and production mode are shown in Figure 11. 

Besides, the supply chain includes 3 depots and one alternative source. Depots D1 and D3 are located at 

plants P1 and P3, respectively. Both have 5 trucks, 3 with a trailer for LIN and 2 with a trailer for LOX. 

Depot D2 is a standalone depot located nearby plant P2. It has 4 trucks available, 2 for LIN and 2 for 

LOX. The alternative source Alt1, which produces both products, is located at the north-east of depot D1 

and the west of depot D2, at a similar distance from both. Only trucks from these depots are allowed to 

load product at plant Alt1. Thus, the distribution capacity is given by 14 trucks, 8 for LIN and 6 for LOX. 

Both 28 LIN customers and 22 LOX customers with varying consumption profiles require inventory 

replenishment during a time horizon of one week. Figure 12 shows the plant, depot, alternative source, 

and customer locations for the entire supply-chain. Overall, it includes 3 plants, 3 depots, 1 alternative 

source, and 50 customers. All problem data for Example 2 are provided as Supplementary Information. 

Similar to Example 1, for every plant and customer we assume that the inventory levels at the end of the 

time horizon must be at least the same than when the time horizon begins. The overall forecasted product 

to be replenished is 50,896 Mcf for LIN and 28,059 Mcf for LOX.   
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Figure 11. Production rate limits for the alternative modes and plants of Example 2. 

 

 
Figure 12. Supply-chain map for Example 2. 
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Route distances are calculated by using the straight line distance for any pair of locations. The route 

generation procedure described in Appendix A is used to propose a sufficiently large route set S. The 

parameters of the algorithm and size of the set of routes obtained for each product are shown in Table 11. 

Overall, 245 customer sets and 505 alternative routes are proposed. For conciseness we do not report 

results for other route sets, although it is clear that changing the parameters in Table 11 can impact the 

routes available for the model, and thus the quality of the distribution schedule found. 

The model statistics and computational results considering a CPU time limit of 1 h. are shown in Table 

12. The model features good computational performance taking into account the model size and the 

number of possible routes being tested. On one hand, Table 12 shows that the relaxed solution is close to 

the best MIP solution, which clearly indicates that the proposed MILP model has a tight relaxation. On 

the other hand, due to the model size and complexity, the convergence rate of the bounds is quite slow 

and the best possible solution is nearly midway the relaxed and the MIP solution even after 1 h. of CPU 

time. However, taking into account the authors’ experience, a solution with a relative gap of ~2.5% is 

excellent for the problem being solved. For instance, while limited by the set of routes proposed, the best 

solution cannot improve more than $2,800. At the best solution found, plant P1 produces and sources a 

total of 26,962 Mcf of liquid product (LIN + LOX), while plants P2 and P3 produce and source 26,664 

Mcf and 25,329 Mcf, respectively. 

 

5.2.1 Impact of electricity price variations  

An alternative scenario (A) is introduced to further show the impact of using a coordinated model that 

simultaneously takes into account production and distribution decisions. In this case, the electricity prices 

(for all time periods, t) are increased by 1 cent for plant P2 and decreased by 0.5 cents for plants P1 and P3. 

Example 2 is solved again with the computational results also shown in Table 12. The model features the 

same size reported previously. The best solution found decreases from $109,841 to $107,756 with the 

modified electricity prices. While the difference between both solutions is small, the impact that the 

change of electricity cost has on the selection of production and distribution activities throughout the 

entire supply-chain is significant. Figure 13 shows how the total cost of each production and distribution 

facility changes between both solutions, and Figure 14 presents a comparison of the product being 

sourced from each plant. As it can be seen, the production in Plant P2 decreases, while the production in 

P1 and P3 increases due to the changes in electricity prices. The distribution costs of the three depots are 

similarly changed. 
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Table 11. Route generation parameters and statistics for Example 2. 

  LIN LOX 
Parameters cmax 3 3 
 dmax 500 500 
 smax 60 45 
 vmin 2 2 
 vmax 5 5 
# of customer sets 140 105 
# of routes  286 219 

 

 

Table 12. Computational results for Example 2. 

 
Example 2 

Example 2 (A) 
change of 

electricity prices 

Example 2 (B)  
shut-down of plant P2 

starting at time t3 

Binary variables 13,832 13,832 13,808 
Continuous vars. 21,533 21,533 21,533 
Constraints 19,993 19,993 19,993 
Relaxed LP sol. 104,070 101,032 115,392 
MIP solution 109,841 107,756 123,135 
Best possible sol. 107,061 104,451 118,505 
Rel. gap 2.5% 3.1% 3.7% 
CPU time  3,600 s 3,600 s 3,600 s 
Nodes 135,991 183,854 69,979 

 
 

 
Figure 13. Comparison of total cost at each production and distribution site for the best solution of 

Example 2 considering alternative electricity prices. 
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Figure 14. Product sourced per plant for each scenario of Example 2. 

 

In order to quantify the impact of the aforementioned change of electricity prices, we take the best 

solution obtained with the original forecast prices and calculate the production cost of each plant P1 to P3, 

but using the modified electricity prices instead. Based on the total product sourced from each plant and 

because usppmi is constant, it is possible to derive from the objective function (30) that the additional cost 

for plant P2 is $5,332.8, while the cost reduction for plants P1 and P3 is $2,696.2 and $2,532.9, 

respectively. Using these results to obtain the production cost of each plant (see Figure 13), both the total 

production cost and the simultaneous production and distribution costs are 2% higher than the solution 

with the modified prices. Conversely, the same can be observed with the production cost of P1 to P3 of the 

best solution for the modified electricity price scenario by using the original forecasted prices instead.  

5.2.2 Production capacity disruptions 

A second scenario (B) is also considered, this time assuming a shut-down is required for maintenance at 

plant P2. The maintenance starts at time t3 (start of second day) and lasts until the end of the week. To 

model the shut-down, the RHS of Eqn (1) is set to zero for plant P2 at all time periods t3-t14. The same 

route set is used and the computational results are also shown in Table 12. The best solution features a 

total cost of $123,135, which is 12% higher than the best solution of the original example. The total 

volume sourced from each plant is also included in Figure 14. This scenario requires product to be 

purchased from alternative source Alt1 in order to ensure that customer demands are satisfied. However, 

as shown in Figure 14, almost all deliveries come from plants P1 and P3. By considering a plant shut-

down, Example 2 (B) illustrates a possible situation in industrial gases supply-chains in which the 

proposed computational tool can help to optimally re-organize production and distribution decisions.  
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5.3 Application of the proposed method to industrial size test cases 
 

The proposed simultaneous production and distribution model has been applied to several real test 

cases involving the current supply-chain of Air Liquide, a multinational industrial gases company with 

operations in 70 countries. The examples include 4 to 15 plants, hundreds of customers, and more than 

1000 alternative proposed routes. Because of the problem size, in some examples additional methods such 

as clustering and assumptions such as planned deliveries were incorporated in the model to reduce the 

complexity of the routing alternatives (see Appendix B). The mathematical model has been applied to 

several industrial-size test cases, including both historical and future scenarios. When dealing with 

historical test cases, some model variables were fixed based on historical data (plant withdrawals, for 

example). Both historical and a fully-coordinated mathematical models were solved and the results 

compared. Potential savings around 9% of the total historical cost were identified due to better 

production-distribution coordination. 

In order to illustrate the complexity of the test cases considered, for medium size examples similar 

to Example 2, the model features good computational performances by finding solutions with a relative 

gap of ~2% in one hour of CPU time. When large examples are considered (100+ customers) the 

computational performance decreases, although the model is still able to find good quality solutions in 

reasonable CPU times. As an example, Table 13 includes the problem size, model size, and computational 

statistics of a large example related to a segregated market region. The example features a planned 

delivery forecast scenario (i.e. customer inventory constraints are not included) with 168 customers and 

282 planned deliveries. After applying the route generation procedure, with a total of 1235 alternative 

routes the model requires 11,053 binary variables (routes are not available for every time t). Although the 

model size is large, a realistic and good quality solution with a 3.6% gap was obtained after 5 h. of CPU 

time. The best solution obtained is composed of 48.5% production cost and 51.5% distribution cost. Out 

of the 235 trips needed for product distribution, 171 trips (~73%) feature a truck filling ratio (truck load / 

truck capacity) higher than 95%. In addition, only four trailers visit an alternative source to purchase 

additional product, which amounts to approximately 1% of the total cost. 

To improve the model accuracy at the distribution side, traveling distances were obtained using 

geographic information system (GIS) software. An efficient implementation of the route generation 

method described in Appendix A allowed exploring several thousands of potential candidate routes, 

depending on the selected parameters. The algorithm enumerates possible routes by traversing a search 

tree where each node represents a route with a given customer set. New nodes are created by adding an 

extra customer to each parent node. Time windows, filling ratios and traveling distances are considered 

when appropriate to select or reject possible routes. While there is always a correlation between the 
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number of routes proposed and the difficulty to converge to an optimal solution, testing alternative sets of 

routes clearly demonstrates the relevance of an appropriate route selection to decrease the distribution 

cost. 

 

Table 13. Statistics for an industrial size production-distribution coordination test case featuring planned 

deliveries. 

Problem size Time periods 14 
 Plants 4 
 Products 2 
 Prod. modes 1 or 2 
 Alt. sources 4 
 Depots 4 
 Trucks 32 
 Customers 168 
 Planned deliveries 282 
 Customer sets 440 
 Routes 1235 
Model size Binary vars. 11,053 

Cont. vars 22,086 
Constraints 16,243 

CPU 
performance 

CPU time 5 h 
Rel. gap 3.6% 
Nodes 144,178 

6. Conclusions and Future Work 
 

This paper has presented an MILP formulation for the simultaneous coordination of production and 

distribution decisions on industrial gases supply-chains. On the production side, the model accounts for 

multiple plants running various production modes while producing one or more products. Because air 

separation is an energy intensive process, the main component of the production cost is the cost of 

electricity, and thus the operation of each plant follows electricity market conditions. On the distribution 

side, a combined vehicle routing and inventory management problem, known as an inventory routing 

problem (IRP), is considered. The vendor is responsible for inventory replenishments so that customers 

do not run out of product. Since the entire supply-chain is included, the IRP considered here includes 

multiple products, and multiple sources for each product. A forecast of customer consumption is given to 

solve the problem. Trucks departing from depots (located or not at plants) are used to deliver product 

from a given source to one or more customers. A route is given by the specification of a depot, a plant, 
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and a customer set to which the product is delivered. Because hundreds of customers are considered, the 

number of possible routes grows exponentially. To handle this complexity, the model selects the routes to 

be used from a set of proposed routes. Alternative routes for this set are chosen by a pre-processing route 

generation algorithm, which inspects thousands of feasible routes taking into account alternative 

parameters and a sorting criterion. Overall, the fully-coordinated model includes production decisions at 

multiple plants, and distribution decisions at multiple depots.  

To asses the impact of a better coordination, different levels of production-distribution coordination were 

proposed. While the fully-coordinated model combines dynamic sourcing (ability to serve the same client 

from multiple plants) with simultaneous production and distribution, alternatives taken into account 

include: (a) either one or multiple plants per customer (fixed sourcing vs. dynamic sourcing), and (b) 

either a sequential (production before distribution) or a simultaneous (production and distribution 

together) approach. As was shown in Example 1, the capability of the model to perform simultaneous 

optimization yields significant cost savings, in both the fixed and dynamic sourcing cases. 

The proposed model has been successfully illustrated with a small and a medium size test case, showing 

both the capabilities of the model, as well as its computational efficiency that is due to a tight MILP 

formulation. The latter allows to readily explore different scenarios such as changes in pricing of 

electricity or disruption in the plant operations, as was illustrated in Example 2. Finally, the application to 

industrial case studies was discussed in which despite longer computational times, savings of the order of 

9% were identified. As for future directions, two areas that deserve attention are the use of decomposition 

techniques for reducing the computational times in large industrial problems, and addressing the 

uncertainty of model parameters. 
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Appendix A - General framework for generating a list of feasible routes  

The mathematical model presented in this paper requires a set of alternative routes given as input. This set 

represents the possible routes that can be selected by the model to obtain a feasible solution. While it is 

possible to enumerate all of them, the number of routes grows exponentially with the number of depots, 

plants, and customers. Therefore, it is convenient to reduce the alternatives by filtering out those routes 

that are more unlikely to be part of the optimal distribution schedule. By limiting the set of routes 

proposed, the size of the model and the computational effort required to find its best solution both 
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decrease. However, this approach can potentially cut off some of the routes needed to obtain an optimal 

solution, and thus the optimality of the proposed model is limited by the quality of the set of routes 

proposed. 

A general framework to generate a set of routes based on the data of depots, plants and customers is 

described here. As mentioned in Section 4.2, each route is defined by a tuple (d, p, s), where d is a depot, 

p is a plant (source) and s is a set of customers. We assume here that plant, depot, and customer locations 

are given and it is possible to calculate the traveling distance between any pair of them. Thus, given a 

tuple (d, p, s) it is also possible to calculate the distance disdps for the shortest path to deliver product from 

plant p to the customers of s using a truck from depot d.  

The procedure ROUTEGENERATION is presented in Table A1. The main parameters of the proposed 

method, which can vary for each plant p and product i, are: 

• cmax: maximum number of customers visited in a trip, 

• dmax: maximum distance for the shortest path of the route,  

• smax: maximum number of routes, 

• vmin: required number of routes for each customer c and time t∈Tc, and 

• vmax: limit on the number of routes for each customer c and time t∈Tc. 

The proposed ROUTEGENERATION procedure iterates over all combinations of plants and products adding 

the routes obtained to a list of routes R. At each iteration (i.e. for a given plant p and product i), all 

possible routes subject to a limit cmax (a given positive integer) on the number of visited customers are 

inspected. Customer sets s are generated as combinations (subsets) of n = 1, 2, …, cmax elements taken 

from Ci. After inspecting the possible routes, GENERATEFEASIBLEROUTES returns a set with all the tuples 

r = (d, p, s) that verify the following conditions: (a) trucks from depot d can source from plant p (p∈Pdi), 

(b) all customers of s can receive product from plant p (p∈Ps, where Ps ≠ ∅ as required in Section 4.2.7), 

(c) the customer set s verifies ≤s  cmax, and (d) the TSP distance of route r does not exceed the limit 

(disdps ≤ dmax). Additional conditions can be imposed so that the number of feasible routes does not 

become too large. Once all feasible routes are obtained, the resulting set FR is sorted based on a criterion 

selected beforehand. To implement the SORT procedure, both the route distance and the logistics ratio (i.e. 

cost per volume sourced) were the alternatives evaluated to quantify the convenience of selecting a given 

route. The logistics ratio, generating the most economically convenient routes, was used in the test cases. 

It is calculated using the maximum volume that can be delivered to the customer set s in a given time t. 

Given the sorted list of routes FR, two selection stages are executed to choose the routes required by the 

model. SELECTMIN ensures the selection of at least vmin routes for each customer c and time period t∈Tc 

when a delivery can be made to this customer. Only if the set of feasible routes FR does not include 
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enough alternatives, vmin different routes are not found. SELECTMAX completes the selection of routes 

seeking at least vmax routes for each customer c and time period t∈Tc. However, it finishes earlier 

whenever the number of selected routes reaches the maximum quantity smax. The procedure TESTROUTE 

is as an auxiliary procedure used for both selection methods. The list of routes R is returned by the 

algorithm, from which customer sets Sdi are derived. 

 

Table A1: Route Generation procedure. 

procedure ROUTEGENERATION 
input: {integers} cmax, dmax, smax, vmin, vmax 
output: {route-list} R 
begin 
 R ← [] {empty list} 
 for each p∈P, i∈Ip 
  FR ← GENERATEFEASIBLEROUTES(p, i, cmax, dmax) 
  SORT(FR) 
  SELECTMIN(FR, R, vmin)   
  SELECTMAX(FR, R, smax, vmax) 
 end for 
 return R 
end 

procedure SELECTMIN 
input: {route-list} FR, R, {integer} vmin 
output: {route-list} FR, R 
begin 
 i ← 1 
 while i ≤ size(FR) 
  r ← FR(i) 
  if TESTROUTE(r, vmin) then  
   Select route r 
   Add r to list R 
  end if 
  i ← i + 1 
 end while 
end 

procedure SELECTMAX 
input: {route-list} FR, R, {integer} smax, vmax 
output: {route-list} FR, R 
begin 
 i ← 1 
 while (i ≤ size(FR)) and (# of selected routes in FR < smax) 
  r ← FR(i) 
  if TESTROUTE(r, vmax) then  
   Select route r 
   Add r to list R 
  end if 
  i ← i + 1 
 end while 
end 
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procedure TESTROUTE 
input: {route} r, {integer} limit 
output: {boolean: whether to select a route or not} 
begin 
 if r is not selected and  
    ∃ customer c and time t such that:  
          (c can receive a delivery at time t using route r  
          and # of selected routes for c at time t < limit)  
 then return true 
 else return false 
end 

 

Appendix B - Large scale problems 

In this section two alternatives to reduce the complexity of the distribution side problem by incorporating 

additional assumptions are described: clustering and planned deliveries. These methods can be used, 

either solely or combined, to facilitate the solution of industrial size problems otherwise limited by the 

computational effort needed to solve a large MILP model.   

Clustering methods may be used to reduce the model size when a given problem instance includes 

hundreds of customers, which leads to a large increase of the number of alternative routes. Let q∈Q be a 

group or cluster of customers and Cq the subset of customers belonging to cluster q. We assume that  the 

set Q is obtained a priori through the application of some clustering algorithm (Jain et al., 1999) and that 

every customer belongs to a unique cluster (at least for each time t.) The location of a cluster q is 

calculated as a weighted average of the locations of the customers belonging to q. In turn, the weight cκ  

given to a customer c∈Cq is based on an estimation of the minimum number of deliveries necessary to 

replenish the consumption of c over the entire time horizon. Eqn (B-1) defines the location ( qx ) of each 

cluster and the minimum number of deliveries ( cκ ), where min,avg
cQ  is the average redline, avg

cR  is the 

average consumption for customer c∈Ci, and }{maxmax truck
kKki UU

i∈=  is the capacity of the largest 

truck available to deliver product i. 
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Routes distances from a given depot d and plant p are obtained using the location of the cluster given by 

Eqn (B-1). An internal distance can be added to each route visiting cluster q, to account for the distance 
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traveled between customers inside the cluster. Two types of routes are considered to deal with clusters on 

the distribution side: (i) intra-cluster routes, that only deliver product to all or a subset of the customers Cq 

and (ii) inter-cluster routes, where two or more clusters are visited on a given round-trip delivery (i.e. a 

truck visits one or more customers of cluster q1 and then one or more customers of cluster q2, etc.)  

To handle these alternatives, we extend the routing scheme presented by adding simple conditions when 

customer sets are defined. Alternative (i) means that there is only one customer set s for each cluster q. 

Moreover, there is a one-to-one correspondence between customer sets s and clusters q. Since it is less 

straightforward, alternative (ii) is discussed in more detail. In this case, for every cluster q and customer 

set s, either sCq ⊂  or ∅=∩ sCq . In other words, customer sets are defined based on cluster data, so 

that each s includes all customers c∈Cq or none of them (an alternative point of view is that each set s 

now includes clusters instead of customers).  

Given an appropriate definition of the sets s, the variable dsqt is introduced representing the volume 

delivered to some or all the customers of q through s. Thus, Eqns (16) and (17) are replaced by the 

following constraints: 
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Notice that Eqns (B-2) and (B-3) must be considered together with customer inventory constraints (23) 

and (24). No additional changes are introduced in the model, only the cluster locations given by Eqn (B-

1) are used to calculate route distances. Overall, by aggregating customers into clusters the number of 

delivery sets s is significantly reduced, which in turn reduces the number of binary variables ykst. The 

tradeoff between the accuracy of route distance calculations and the CPU time required to solve the 

problem must be evaluated to select between using a detailed customer-based routing approach or an 

approximate cluster-based method. 

The second alternative to handle large test cases is a reduction of scope of the distribution side problem 

by assuming that the amount of product to be delivered to each customer throughout the time horizon is 

given. In this case, customer inventory constraints are not needed, and the problem data only specifies the 

forecast of planned deliveries instead of the customer consumption profiles. Thus, the distribution side 

full inventory routing problem reduces to a smaller vehicle routing problem with time windows (VRP-
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TW). The complexity of the problem decreases, mainly because the number of routes available at any 

given time is restricted by the possible deliveries (open time windows) at that time.  

We assume that, for each delivery of product i to customer c, the volume to be delivered and the specific 

time window during which the delivery takes place are given. The parameter deliv
ttcU
21,,  introduced in Section 

4.4 is used, where the length of the time intervals (t1, t2) is usually one day.  Let Tc be the set of time 

periods t when a delivery can be made to customer c, then the accumulated volume of product i that must 

be delivered to customer c up to time period t is calculated as: 

 

CcU sum
tc ∈∀= 0
0,  (B-4) 
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In order to guarantee that the right amount of product is delivered to customer c by the end of each time 

window (t1, t2), constraint (B-6) is used. This constraint is defined when *
cTt∈ , where 

{ }0:'| ,',
* >∃∧∈= deliv

ttccc UtTttT  includes the upper bound limits of all the time windows of customer c, 

and it works properly even if two deliveries have overlapping time windows.  
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To handle planned deliveries, customer inventory constraints (23) and (24) are replaced by Equations (B-

4) to (B-6). To use these equations it is important to ensure that, for all model constraints, variables ykst, 

ekst, dsct, and dsqt are only defined at time periods such that t∈Ts, where cscs TT ∈=  . 

 As a particular case, if every time window is restricted to a unique period (i.e., t1 = t2), then Equation (B-

6) reduces to Equation (B-7). In this case, the amount of product delivered to customer c at time period t 

(Dc,t) becomes a problem parameter. 

  
*

,,, , c
deliv

ttctc TtCcUD ∈∈∀=  (B-7) 
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Finally, planned deliveries are particularly useful when combined with clustering methods. For instance, 

notice that when definition (B-7) is applied the LHS of Eqn (B-3) can be calculated a-priori. 

Nomenclature 

Subscripts 

c customer 
d depot 
i product 
j product grade 
k truck 
m production mode 
p plant 
q cluster 
s customer set (subset of customers visited in a given route) 

Sets 

C customers 
Ci customers for product i 
Cq customers belonging to cluster q 
D depots 
I products 
Ip products of plant p 
Ipm products produced by plant p while running in mode m 
Jc product grades that can be delivered to customer c 
Ji product grades of product i 
K trucks 
Kdi trucks for product i available at depot d 
M production modes  
Mpt production modes available at plant p in time period t 
P all plants  
Palt alternative sources   
Pown plants owned by the company 
Pdi plants associated to depot d and product i 
Pdi,s plants from which a truck from depot d can source product i to customer set s 
Q clusters of customers  
Qi clusters of customers for product i 
Si customer sets for product i  
Sdi customer sets available for product i and depot d 
Spi alternative customer sets to source product i from plant p 
T time periods 
Tc time periods when a delivery to customer c is possible 
Ts time periods when a delivery to all customers in s is possible 

Parameters 

,pm iλα  coefficient of the production rate of product i for the limiting hyperplane  λ  
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dpsδ  difference between actual distance disdps and minimum distance min
dsdis  

max
,idpδ  maximum dpsδ  for all possible sets s∈Sdi 

t∆  duration of time period t 
),( 21 ttµ  total product consumed by customer c in the interval [t1, t2]  

pη  turndown ratio for plant p  
,pm λπ  upper bound for the hyperplane  λ limiting the feasible rates of production mode m, plant p  

cκ  estimation of the minimum number of deliveries for customer c 
init
pb  whether plant p is running (1) or shut down (0) at time t 

ck traveling cost per distance unit for truck k 
purchase

tpiC ,  cost of product i if purchased at alternative source p in time t 
disdps shortest traveling distance of route (d, p, s) obtained by application of a TSP method (customers 

of set s are visited using the shortest path starting at plant p and finishing at depot d) 
min
dsdis  minimum distance required for a truck of depot d to deliver product from any valid source to 

customer set s  
start

tpF ,  start-up cost of plant p at time t 
H time horizon 

ini
cL  initial inventory of customer c 
ini
piL  initial inventory of product i at plant p 
min
ctQ  redline (safety stock level) for customer c at time t 
min

,tpiQ  safety stock in time period t for product i at plant p 
max
cQ  storage capacity of customer c 
max
piQ  storage capacity of product i at plant p 
purchase

tpiQ ,  maximum volume of product i available at alternative source p in time t  
Rct product consumption forecast of customer c at time t 

site
tpiR ,  forecast of gaseous customer pipeline demand for product i at plant p in time period t 

deliv
ttcU
21,,  volume of product required by customer c between time t1 and time t2 (planned delivery) 

sum
tcU ,  accumulated volume required by customer c at time t 

truck
kU  trailer capacity for vehicle k 
withdrawal

tpiU ,  fixed truck withdrawal volume of product i from plant p at time period t 
upt electricity price forecast of plant p during time period t 
usppmi unit specific power 

max
pmiw  maximum production rate of product i at plant p running production mode m 
min
pmiw  minimum production rate of product i at plant p running production mode m 

Binary Variables 
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start
ptb  denotes that plant p starts operation at time period t 

Bpmt denotes that plant p operates in mode m during time period t 
Ykpt denotes that truck k loads product at plant p in time period t 
ykst denotes that truck k visits the customers in set s during time period t 

Continuous Variables 

ktβ  additional distance traveled by truck k to load product from a given plant at time t 
Dc,t total volume delivered to customer c in time period t 
dsct volume delivered to customer c distributed among customers of set s in time t  
dsqt volume delivered to cluster q distributed among members of set s in time t 

site
tpiD ,  volume of product i to be gasified and sent by pipeline at plant p in time period t 

truck
tpiD ,  volume of product i withdrawn for truck delivery from plant p at time period t  

DCostt total distribution cost at time t 
DISkt distance traveled by truck k at time t 
Ekpt volume of product withdrawn from plant p and loaded into truck k at time t  
ekst volume of product delivered by truck k to the customers s in time t 
Lct inventory of customer c at time t 
Lpit inventory of product i available at plant p at the end of time period t 
PCostt total production cost at time t 
PWp,t power consumption of plant p at time period t 
Wpmi,t production rate of product i at plant p, when p is running in mode m at time t (zero otherwise). 
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Supplementary Information – Problem data for Example 2 
 
Table S1. Inventory at each production facility (Mcf). 
 

 P1 P2 P3 
 LIN LOX LIN LOX LIN LOX 
Initial 10,000 8,000 8,500 6,500 6,500 7,000 
Maximum 18,000 12,000 12,000 9,000 14,000 10,000 
Redline 5,000 3,500 3,000 4,000 4,000 3,000 

 
Table S2. Production rate limits for each plant and production mode, given as vertices of the product space 
(Mcf/h). 
 

Production mode  P1 P2 P3 
LIN LOX LIN LOX LIN LOX 

Hi LOX 1 60 75 80 55 60 60 
2 100 65 117 55 100 60 
3 110 65 117 80 100 95 
4 110 100 82 88 50 110 
5 75 110 72 88 40 110 
6 60 100 72 65 40 70 

Hi LIN 1 117 24 130 33 110 18 
2 195 20 180 29 170 15 
3 195 36 180 42 170 28 
4 117 40 170 48 145 43 
5   130 51 120 45 
6     110 40 

 
Table S3. Additional parameters for plants. 
 

 USPa 
(kWh/Mcf) 

Start-up cost  
($) 

Initial state 

P1 20 7,000 operating 
P2 20 4,000 shut-down 
P3 20 6,000 operating 

a The same unit specific power coefficient applies to all production modes. 
 
Table S4. Location of plants and depots (miles). 
 

 Owned plants/depots  Alternative sources 
 P1/D1 P2 D2 P3/D3 Alt1 
X coord. 58 214 177 246  85 
Y coord. 92 206 195 72  204 

 
 
Table S5. Vehicles available at each depot. 
 

 Number of trucks/trailers Trailer capacity 
(Mcf) 

Cost 
($/mile) LIN LOX 

D1 3 2 630 2.75 
D2 2 2 630 2.85 
D3 3 2 630 2.65 



 
Table S6. Customer location and storage data. 
 

  Location (miles)  Inventory (Mcf) 
  X coord. Y coord.  Initial Maximum Redline 

LIN 
Customers 

c1 21 66  1,200 1,674 504 
c2 45 60  837 1,715 413 
c3 46 32  381 837 168 
c4 52 272  561 873 261 
c5 54 174  264 420 105 
c6 65 105  2,900 4,250 961 
c7 80 184  1,788 2,793 837 
c8 93 94  249 453 114 
c9 105 48  498 699 141 
c10 113 58  1,611 2,571 642 
c11 119 29  459 873 174 
c12 135 88  1,803 2,514 753 
c13 148 78  234 453 90 
c14 165 125  1,615 3,837 710 
c15 189 11  1,338 2,514 753 
c16 213 114  255 420 105 
c17 215 59  546 699 210 
c18 219 147  1,518 3,354 672 
c19 220 87  1,980 3,072 615 
c20 224 257  627 837 168 
c21 228 220  1,245 2,514 630 
c22 236 19  1,158 1,674 436 
c23 243 230  429 873 174 
c24 246 134  1,335 2,514 630 
c25 253 45  1,884 3,072 615 
c26 255 207  1,725 2,514 753 
c27 278 172  1,407 2,514 504 
c28 280 30  276 420 84 

LOX 
Customers 

c29 18 52  384 546 108 
c30 23 226  274 612 196 
c31 34 186  318 519 105 
c32 38 73  597 1,140 342 
c33 43 113  1,122 2,070 519 
c34 61 246  1,323 2,244 450 
c35 89 156  756 1,035 228 
c36 93 171  420 558 111 
c37 98 114  360 519 186 
c38 105 121  819 1,035 321 
c39 126 169  1,276 2,149 790 
c40 140 280  918 1,176 420 
c41 153 87  733 1,258 261 
c42 167 216  648 1,822 442 
c43 184 93  270 519 105 
c44 186 182  546 759 153 
c45 190 173  282 573 114 
c46 191 135  1,734 2,760 690 
c47 195 44  795 1,035 312 
c48 222 29  966 1,935 563 
c49 226 77  744 1,038 312 
c50 232 273  474 900 222 

 



 
Table S7. Consumption forecast for each customer and time period (Mcf). 
 

  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 
LIN 
Customers 

c1 96 156 132 108 108 102 114 156 90 126 168 132 168 150 
c2 102 150 105 114 150 129 123 123 102 105 144 165 111 150 
c3 75 54 45 63 48 78 54 54 66 72 69 60 60 48 
c4 57 45 57 51 72 69 78 57 72 78 72 57 48 48 
c5 33 33 21 39 24 24 33 36 24 21 33 33 30 30 
c6 227 227 197 407 263 368 242 194 359 182 215 164 233 293 
c7 162 165 186 183 186 273 279 192 192 246 195 267 156 243 
c8 24 36 24 24 33 33 36 27 33 30 27 45 33 27 
c9 48 48 45 69 42 45 39 48 39 48 45 42 39 57 
c10 195 135 228 249 204 207 174 204 216 195 150 213 195 144 
c11 87 54 72 78 84 51 57 51 54 72 75 48 51 63 
c12 219 141 186 225 189 192 126 195 183 249 150 147 129 147 
c13 27 39 39 27 30 39 42 36 45 24 27 24 36 27 
c14 180 168 312 264 168 204 324 228 264 216 276 192 240 228 
c15 126 159 228 228 234 153 183 132 165 180 165 144 228 177 
c16 33 24 36 27 39 39 21 30 36 33 21 39 42 33 
c17 45 51 36 63 54 60 60 57 39 69 60 69 66 57 
c18 324 246 180 228 240 234 186 294 300 174 246 216 318 168 
c19 276 237 213 240 297 207 156 300 240 204 306 270 171 306 
c20 72 72 75 66 45 63 45 72 51 51 75 84 72 72 
c21 144 183 162 237 135 177 168 186 207 207 168 138 240 153 
c22 138 162 162 156 156 114 126 156 132 90 132 132 138 96 
c23 57 57 66 60 51 72 66 69 75 72 45 81 75 51 
c24 201 210 150 171 204 219 177 144 126 126 246 249 246 234 
c25 174 162 240 183 306 279 201 168 219 207 171 243 222 216 
c26 240 153 153 195 204 168 144 243 156 135 165 132 228 156 
c27 177 165 183 216 201 141 147 165 198 159 129 213 210 168 
c28 36 24 36 36 39 33 27 33 30 24 39 27 24 33 

LOX 
Customers 

c29 36 45 54 39 33 42 36 54 30 42 39 33 42 42 
c30 60 60 42 48 48 60 36 48 54 48 30 54 42 42 
c31 36 42 42 39 42 51 33 45 51 51 33 33 33 30 
c32 99 72 99 93 75 99 57 105 57 81 78 96 81 87 
c33 105 180 198 162 153 177 156 195 183 117 132 174 150 204 
c34 141 120 117 129 162 132 177 210 117 153 150 168 141 213 
c35 78 51 78 96 54 90 66 63 75 72 81 57 99 54 
c36 51 51 45 39 39 51 54 45 36 42 39 39 30 51 
c37 39 45 48 36 51 36 36 45 45 42 30 42 42 45 
c38 63 60 99 75 57 99 69 102 75 78 63 63 84 93 
c39 198 180 222 222 156 198 288 198 168 216 204 174 234 144 
c40 90 114 114 66 78 108 78 72 114 78 108 66 84 72 
c41 102 90 108 96 84 96 102 90 90 84 90 108 84 108 
c42 156 204 108 168 156 108 120 180 180 180 216 132 156 132 
c43 48 45 48 27 51 42 27 42 30 33 45 27 36 42 
c44 57 51 72 45 72 54 54 42 42 48 51 72 69 69 
c45 45 57 42 39 51 51 30 54 30 45 30 39 48 45 
c46 180 153 192 264 174 153 159 192 144 141 159 147 252 192 
c47 72 102 63 69 84 63 57 72 78 60 78 99 54 78 
c48 180 204 180 192 132 180 192 150 174 144 138 132 132 150 
c49 102 72 54 96 90 102 72 60 54 96 54 96 78 54 
c50 54 78 60 72 72 90 66 72 72 48 90 72 48 72 

 
 



 
Table S8. Electricity prices (cent/kWh) at each production facility. 
 

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 
P1 4.15 3.72 4.28 3.86 3.98 3.66 3.91 3.62 4.15 3.74 4.30 3.84 4.04 3.86 
P2 3.08 2.85 2.98 2.53 3.18 2.86 2.90 2.68 3.15 2.79 3.03 2.50 3.04 2.65 
P3 3.75 3.50 3.64 3.04 3.84 3.25 3.53 3.45 3.52 3.01 3.54 3.13 3.89 3.13 

 
 
Table S9. Alternative source parameters. 
 

Plant Alt1 LIN LOX 
Selling price ($/Mcf) 1.6 1.8 
Availability (Mcf) 4,000 3,000 
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